Code
import numpy as np
import matplotlib.pyplot as plt
r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r
fig, ax = plt.subplots(
subplot_kw = {'projection': 'polar'}
)
ax.plot(theta, r)
ax.set_rticks([0.5, 1, 1.5, 2])
ax.grid(True)
plt.show()
This chunk shows how you can produce a beautiful figure.
import numpy as np
import matplotlib.pyplot as plt
r = np.arange(0, 2, 0.01)
theta = 2 * np.pi * r
fig, ax = plt.subplots(
subplot_kw = {'projection': 'polar'}
)
ax.plot(theta, r)
ax.set_rticks([0.5, 1, 1.5, 2])
ax.grid(True)
plt.show()
This section demonstrates how to create and display a simple pandas DataFrame.
import pandas as pd
data = {
"Name": ["Alice", "Bob", "Charlie"],
"Age": [25, 30, 35],
"City": ["Paris", "Dublin", "Berlin"]
}
df = pd.DataFrame(data)
df| Name | Age | City | |
|---|---|---|---|
| 0 | Alice | 25 | Paris |
| 1 | Bob | 30 | Dublin |
| 2 | Charlie | 35 | Berlin |
This section demonstrates how to create and display a simple pandas DataFrame.
from great_tables import GT, html
from great_tables.data import sza
import polars as pl
from polars import col as c
import polars.selectors as cs
sza_pivot = (
pl.from_pandas(sza)
.filter((c.latitude == "20") & (c.tst <= "1200"))
.select(pl.col("*").exclude("latitude"))
.drop_nulls()
.pivot(values="sza", index="month", on="tst", sort_columns=True)
)
(
GT(sza_pivot, rowname_col="month")
.data_color(
domain=[90, 0],
palette=["rebeccapurple", "white", "orange"],
na_color="white",
)
.tab_header(
title="Solar Zenith Angles from 05:30 to 12:00",
subtitle=html("Average monthly values at latitude of 20°N."),
)
.sub_missing(missing_text="")
)| Solar Zenith Angles from 05:30 to 12:00 | ||||||||||||||
| Average monthly values at latitude of 20°N. | ||||||||||||||
| 0530 | 0600 | 0630 | 0700 | 0730 | 0800 | 0830 | 0900 | 0930 | 1000 | 1030 | 1100 | 1130 | 1200 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| jan | 84.9 | 78.7 | 72.7 | 66.1 | 61.5 | 56.5 | 52.1 | 48.3 | 45.5 | 43.6 | 43.0 | |||
| feb | 88.9 | 82.5 | 75.8 | 69.6 | 63.3 | 57.7 | 52.2 | 47.4 | 43.1 | 40.0 | 37.8 | 37.2 | ||
| mar | 85.7 | 78.8 | 72.0 | 65.2 | 58.6 | 52.3 | 46.2 | 40.5 | 35.5 | 31.4 | 28.6 | 27.7 | ||
| apr | 88.5 | 81.5 | 74.4 | 67.4 | 60.3 | 53.4 | 46.5 | 39.7 | 33.2 | 26.9 | 21.3 | 17.2 | 15.5 | |
| may | 85.0 | 78.2 | 71.2 | 64.3 | 57.2 | 50.2 | 43.2 | 36.1 | 29.1 | 26.1 | 15.2 | 8.8 | 5.0 | |
| jun | 89.2 | 82.7 | 76.0 | 69.3 | 62.5 | 55.7 | 48.8 | 41.9 | 35.0 | 28.1 | 21.1 | 14.2 | 7.3 | 2.0 |
| jul | 88.8 | 82.3 | 75.7 | 69.1 | 62.3 | 55.5 | 48.7 | 41.8 | 35.0 | 28.1 | 21.2 | 14.3 | 7.7 | 3.1 |
| aug | 83.8 | 77.1 | 70.2 | 63.3 | 56.4 | 49.4 | 42.4 | 35.4 | 28.3 | 21.3 | 14.3 | 7.3 | 1.9 | |
| sep | 87.2 | 80.2 | 73.2 | 66.1 | 59.1 | 52.1 | 45.1 | 38.1 | 31.3 | 24.7 | 18.6 | 13.7 | 11.6 | |
| oct | 84.1 | 77.1 | 70.2 | 63.3 | 56.5 | 49.9 | 43.5 | 37.5 | 32.0 | 27.4 | 24.3 | 23.1 | ||
| nov | 87.8 | 81.3 | 74.5 | 68.3 | 61.8 | 56.0 | 50.2 | 45.3 | 40.7 | 37.4 | 35.1 | 34.4 | ||
| dec | 84.3 | 78.0 | 71.8 | 66.1 | 60.5 | 55.6 | 50.9 | 47.2 | 44.2 | 42.4 | 41.8 | |||